其游戏玩法是玩家左右滑动控制一个具有弹力的短板,接球并反弹小球,消除游戏界面上方一排排的小方块,消掉所有方块就能通关游戏,并以此获得成就感。
如果将这款游戏用作ai训练平台,通过特定的算法和强化学习,ai就会从一开始完全接不住球,到后来不光能接住球,还能准确计算出小球的反弹角度,消掉上方所有方块。
甚至经过一段时间的训练和学习,ai还能找到最优的通关方式。
比如先精准消掉左上角的几个方块,打通所有方块的上方路径,然后再把小球打进去,让小球在方块阵的上方,在墙壁与方块阵之间来回反复反弹,每趟能连击消除几十个方块,大大提高了通关速度,并且获得更多的连击分数加成。
这样的游戏思路和技术,可能只有高玩才能想到和做到,到了这一步,ai在打方块这款游戏里的技术水平,显然已经超过了普通玩家,其学习方式,就不是“监督学习”了,而是“强化学习”,ai拥有了自主学习的能力。
同样的方式,如果将ai放入其他游戏,或者说不同算法模型里不断地的学习总结,那么一样也能训练培养出能力极强的ai出来。
从本质上看,培养教导ai,其实与教育小孩没有太大区别。
那么反过来说,通过游戏进行寓教于乐学习,才是人类小时候最佳的教育学习方式,将游戏视为洪水猛兽,是不可取的,在教育方法上,自我强化学习也要比填鸭式“监督学习”效果更好。
算法问题解决了,接下来就要满足算力和数据的条件。
数据不必多说,游戏训练平台本身就是在不断地收集数据,随着ai智能不断提升,数据收集的速度和质量也在不断提升,而在实际运用场景中,遍布全网的大数据了解一下?
比如未来的人工智能无人驾驶技术,现在沸腾汽车、沸腾出行就已经在