”
来到一个多媒体会议室,罗先军打开大屏幕,播放幻灯片,为江博讲解起了仄秒光谱技术的要点。
江博当下无事,同时也比较好奇。
另外,根据系统的尿性,他感觉如果将【超短超强激光技术】中所提到的‘电子之谜’给解开之后,应该会有一笔极为丰富的积分奖励。
这种涉及基础物理科学的重大突破,感觉或许十万积分都不止,指不定二十万,甚至更多。
于是,他便坐在一根凳子上认真听了起来。
罗先军指着屏幕讲解道:“仄秒光谱技术,是将激光脉冲技术与电子显微技术结合起来。
在观测电子能态改变的实验中,我们首先通过郑教授和周教授那边的帮助,拿到了一种可以专门捕捉和操控单个原子的超导强磁设备。
我们通过发射一种800nm波长的红色激光脉冲,激发氢原子内的电子,而再用一种266nm波长的蓝色激光脉冲,负责测量电子的运动。
这两种波长的激光脉冲,脉宽都极为短暂,达到了0.85阿秒。”
罗先军指了指屏幕上的画面,翻了一页,又接着道:“一般情况下,氢原子受到光照后,绕核电子会吸收光能,从低能态跃迁到高能态。
这个时候,如果光脉冲持续的时间足够短,输送的能量足够强,那么电子会在氢原子中发生短暂的响应,发生辐射,释放吸收的能量。
而没了刚才吸收的能量,这种被激发的电子,又会快速落回原本的基态。
利用那种测量电子运动的蓝色激光脉冲,可以有极大的几率跟踪捕捉到电子落回基态瞬间的情况。
当然,这个数值非常短暂,因为这束蓝色激光脉冲一旦接触到电子所在的能级,就会再次让电子受激跃迁到高能态。
经过在极短的时间尺度内,连续对氢原子的电子进行上百次