笔奇阁

繁体版 简体版
笔奇阁 > 我只想当一个安静的学霸 > 028章 欧拉七桥的变种?

028章 欧拉七桥的变种?(3 / 4)

1736年的一个明媚春天,欧拉在哥尼斯堡的一处公园等待他的美术老师女友到来。

迟到是女人的先天属性,左等右等,一个小时过去了,这位教美术的妹子尚未赴约。

欧拉很无聊啊,便开始研究数学,他发现哥尼斯堡公园里的一条河悬浮两座小岛,有七座桥梁连接小岛与河岸,游客们通过桥梁踱步到岛散心,并在两座小岛间穿梭。

欧拉忽然来了灵感,他提出一个设想,是否存在一种路径,从任何一处出发都能不遗漏、不重复的通过七座桥梁,最终回到起点处。

后来欧拉将这个设想写成论,投稿到圣彼得堡科学院,论名为《哥尼斯堡的七座桥》。后人亦称之为“欧拉七桥问题”。

再后来,欧拉自己推翻了这个假设,证明不可能存在这么一条路径。

为了打自己的脸,欧拉发明了一种新的证明方法,他开创了数学的一个新分支---几何拓扑。

这是顶级数学家的格局,我已无敌,我已没有对手,我唯一的对手是我自己,为了打败我自己,我开创一个新的数学分支。

两三百年过去了,沈面临一个新问题,八桥问题。

最初版的欧拉七桥是无法得到答案的,至于八桥是否存在这么一条路径,得算算才知道。

沈算下算,左算右算,半个小时过去,算不出来啊!

八桥是否和七桥一样,根本不存在那条所谓的路径,能不遗漏、不重复的通过每一座桥梁,最终回到起点。

“全国赛毕竟是全国赛,拓扑这玩意非常难搞,我没有办法求出这条路径,也无法证明它不存在。”

沈放下笔尺,大力按压太阳穴,出师不利,出师不利啊。

时间一分一秒的过去,沈无法下笔,他有点强迫症,非得把第一题做出来,再去破解后面两题。

“欧拉,七桥,八

『加入书签,方便阅读』