当天晚上,张硕收到了弗雷德里希的回复邮件——
“张硕先生,你好。
我是弗雷德里希-约斯特,我审核了你的论文。很抱歉的是,最开始我是带着找问题的心态看的。
因为我不相信。
任何一种非线性偏微分方程,都不可能找到通用算法。
这是我的观点,而你的论文让我改变了看法。
其中,最精彩的部分在于‘证明渐进解’的逻辑,我还特别问了老朋友马克西姆,把那一部分发给了他。
你肯定知道他,大名鼎鼎!
马克西姆告诉我,‘证明渐进解’的部分很完善,能形成完善的逻辑闭环,他评价说那一部分非常有意思,还说想认识你。”
邮件的前半部分都是说一下无关的事情,唯一确定的是‘证明渐进解’的逻辑没问题。
后半部分才是主体内容。
“我对于你的论文很感兴趣,并仔细研究了很久。我发现如果是涉及到非线性问题,伱的算法得出的结果范围就会广泛。
如果涉及到完全非线性的方程,所得出的结果甚至会变得没有意义。
我的判断,对吗?
你的算法还可以更进一步,也就是求得更精确的解的范围吗?”
在邮件的最后,弗雷德里希-约斯特问了两个问题。
一个是‘涉及到非线性问题,算法得出的结果范围就很广泛’,直白来说,就是结果会变得不精准。
另一个就是询问算法是否可以再进一步。
第一個问题非常关键。
偏微分方程可以分为‘线性’和‘非线性’,而‘非线性’也不一定是‘完全非线性’。
方程和方程不同,‘非线性’的程度也存在区别。
线性方程就像是一条笔直的大路,而非线性方程则是公路出