叶级数法是一种利用级数来求解椭圆型偏微分方程的方法,它可以将椭圆型偏微分方程转化为一系列的傅里叶级数,从而求得椭圆型偏微分方程的解。
李伟华给学生举例讲了一个方程的求解过程。
单单只是对一个方程进行求解,就花费了半节课以上的时间,再加上其他的概述讲解,时间就过的差不多了。
张硕边听边思考着。
课堂上的内容并没有什么难度,就只是常规二阶椭圆形偏微分方程求解,所使用的方法也是很大众的傅里叶变换法。
他注意到的是求解的复杂性。
只是个常规的二阶椭圆形偏微分方程,还是能够求出精确解的特例方程,解析过程竟然复杂到如此程度。
这个类型的方程在实验中有很多应用。
在微观物理实验的数据计算工作中,根本不可能这样慢慢求出精确解,而是直接用数值代入法去找出方程解的范围,也就是圈定一个范围,确定精确解就在范围之内。
“能不能利用一种通用的手段,计算出精确解的边界值范围?”
张硕思考的是这个问题。
课程结束。
对于张硕而言,课程难度并不高,但对于其他的博士生来说,想完全理解还是有难度的。
比如,黄凯。
他找了李伟华问出课程上不理解的内容,还有其他的博士生也站在旁边听着。
张硕走了过去,站在旁边耐心的等着。
等其他人提问过以后,他才上前问道,“李老师,你讲的这一类方程,有没有一种通用方法,能够以方程的各种数值计算出模糊的边界值?”
李伟华听的一愣,仔细理解了好半天才问道,“你是想通过计算机手段,来直接计算出精确解的范围?”
张硕点头,“我是在思考这个问题。”