下面的步骤。
台下的所有人都聚精会神地看着他所写的东西,同时也对他刚才所说的,将整个区域分割成无数的小区域,再进行整体化空间的分析而感到有兴趣。
他们听得出来,这明显是一种对整体化空间的运用方法。
这也正是他们希望学习到的。
只不过,随着李牧开始写起来后,众人便都惊叹了起来。
这个整体化微分方法,从技巧难度上,实在有些太秀了点。
用围棋的话来说就是妙手,用钢琴曲来说的话就是拉赫玛尼诺夫第三钢琴协奏曲,小提琴曲就是帕格尼尼第二十四首随想曲。
这样的技巧难度……
让他们不得不惊叹,李牧还是那个李牧!
就像是他曾经证明的另外几个猜想一样。
当然,一时的惊叹,并没有影响到他们跟着李牧的步骤继续思考着。
在完成了这一部分之后,下面的一切似乎都变得清晰明朗了起来。
当ns方程的一般形式被描述在了整体化空间之中,关于湍流的不规则问题,似乎也明显了起来。
ns方程尝试描述的就是湍流,湍急的河流、滚滚的暴风云或烟囱冒出的烟雾等等,都属于湍流,这也是让各种学者们都为之着迷的问题。
像维尔纳·海森堡,那位提出了海森堡不确定性原理的著名物理学家,就曾经被提问过,如果他死后上了天堂,最想问上帝什么问题,他回答道:“当我遇到上帝时,我会问他两个问题:为什么是相对论?为什么会出现湍流?我相信他只会回答第一个问题。”
意思就是说,大概上帝也回答不上来第二个问题。
所以,李牧能否在一定程度上,让这个问题更进一步呢?
……
黑板逐渐的被写满了。
上面满满地如同天书一样的式子,让台下的众多听者们一时间都有些昏昏欲睡。
那些参加了李牧第