第447章阶段性总结
……
6月30日晚上,林灰还去见了伊芙·卡莉一面。
怎么说呢,伊芙·卡莉所从事的跟进工作有一定的进展,但进展并没有想象中的那么大。
至少跟林灰预期的有落差。
当然林灰知道这事也急不得。
一般来说研究一个以生成式文本摘要为内核的高效摘要应用需要的时间往往要受到很多因素制约:
首先是技术水平方面:
开发者的技术水平和经验将影响项目开发的进度和质量。
如果开发者有较为丰富的自然语言处理和机器学习经验,
那么开发一个高效的生成式文本摘要应用的时间可能会更短。
其次是需求分析方面:
需求分析要明确,对用户需求的精准分析同时明确对摘要应用的目标,将对开发的时间和资源投入产生影响。
如果需求分析不清晰,可能需要耗费更多的时间来重构和修改代码。
其次涉及到数据集和算法选择方面:
构建生成式文本摘要应用需要选择合适的数据集和算法。
数据集和算法这将决定摘要的质量和效率。
选择合适的数据集和算法将有助于少走弯路。
而一旦数据集较大或算法复杂,需要进行模型训练和优化,开发时间可能会更长。
尤其是涉及到机器学习这方面的算法。
通常表现是算法里面还有算法。
或者说复杂的算法可以分解成多个较为简单的算法。
这些简单的算法可以组合在一起完成更复杂的计算任务。
并非仅仅是自然语言处理这个方向会遇到这种情况。
据林灰所知,很多机器学习的算法方面都会有类似的情况。