莉就很无语。
或许在那些屁股决定脑袋的人心中。
清楚技术路线了,技术复现能够实现与否只是时间长短的问题了。
但事实哪有那么简单。
反正进行了一晚上尝试的伊芙·卡莉发现想要进行复现很难。
抛开linhui提出的算法技术本身不谈。
就是linhui在生成式摘要算法专利中顺手牵羊搞定的那个“lh文本摘要准确度衡量模型”
其他团队想要从无到有的构建一个同样的模型都有亿点困难。
说起来lh文本摘要准确度衡量模型的构建过程思路倒是很清晰:
第一,运用语言模型来评估算法生成语言的流畅度;
第二,使用相似度模型评估文本和摘要之间的语义相关性;
第三,为了有效评估实体、专有词的复现程度,引入原文信息量模型来评估。
然鹅也仅仅是说起来很简单而已。
说到把大象放进冰箱也很简单同样是三步:
——打开冰箱门,放进大象,关上冰箱门。
知道怎么做没用,关键还是要执行。
没办法执行的话,步骤再清晰也没用。
lh文本摘要准确度衡量模型的构建过程有三步。
第一步就很复杂。
该怎么进行语言模型的构建呢?
按照linhui提出的技术路线。
语言模型建模过程中,包括词典、语料、模型选择等。
问题出在语料库上,语料库一词在语言学上意指大量的文本。
这类文本通常经过整理,具有既定格式与标记。
涉及到英文语料库的信息还比较容易,毕竟伊芙所在的团队和牛津、哈佛、耶鲁三所大学的语言学方面都是深度合作的关系。
但涉及到中文以及其他文字预料信息该怎么处理这就完全不好说了。
巧妇难为无米之炊。