笔奇阁

繁体版 简体版
笔奇阁 > 走进不科学 > 第一百三十五章 不止是韩公廉那么简单

第一百三十五章 不止是韩公廉那么简单(4 / 9)

次巨大的飞跃:

刘徽整理了整个秦汉时期的数学知识,奠定了华夏古代数学的整体框架,总结了线性代数的整体计算框架。

大体上类似希腊数学中的欧几里得。

而朱世杰则整理了唐宋以降的数学, 规范了天元术的数学框架,将华夏的代数从无符号计算带入了有符号计算。

而在三角领域中,贾宪无疑是个大牛中的大牛。

还记得1665副本中提到的杨辉三角吗?

杨辉三角其实就是由贾宪提出来的,所以有些人会叫它贾宪三角。

不过由于著作失传的缘故, 他的优秀思想被另一位大数学家杨辉记录了下来,因此后世才以杨辉三角为名定义了这个规律。

另外。

贾宪还创造了“增乘开平方法”和“增乘开立方法”的开方方法。

也就是求高次方程数值解的一类高效方法——这时欧洲还正在使用“罗马数码”呢,表数都十分困难,更不用说作这么复杂的开方运算了。

贾宪增乘开方法的计算程序,大致和欧洲数学家霍纳(公元1819年)的方法相同,但比他早770年。

没错。

求高次方程数值。

而这也恰恰是镜面精度计算中的一道重要环节,并且还有很多衍生数算公式要解。

也就是说。

无论是从能力还是专业角度出发,贾宪都是一位要比韩公廉合适的多的人选。

但与此同时,他也是徐云计划之外的人物。

因为贾宪此人的生卒时间,后世同样无人知晓。

不过根据《宋史·艺文志》记载。

贾宪在1050年左右完成了《黄帝九章算经细草》,当时他担任的是左班殿直的职务。

左班殿直是三班之一,正九品官职。

根据后世

『加入书签,方便阅读』