间、碳原子和其他原子之间形成共价键,键能大,化合物较稳定,所以在自然界能形成种类繁多的化合物。
这也是为什么在地球上,明明是硅在地壳中含量仅次于氧, 远比碳多, 但自然界中硅元素的化合物种类却没有碳元素的化合物种类多原因。
因为硅的化合物没有碳的稳定。
而这点,其实是可以应用到碳基芯片的制造上面的,
应用碳的化合物来制造相应的p、n类半导体,其理论基础是‘轨道杂化理论’。
解决的问题是石墨烯单晶材料的‘带隙’问题。
石墨烯单晶材料的带隙缺乏,限制了石墨烯在逻辑电路中的应用。
相当于家里的电灯没有开关一样,一直常亮。
........
‘轨道杂化理论’是在1931年的时候由米国的化学家鲍林在原子的价键理论的基础上提出的,它属于现代价键理论。
但是它在成键能力、分子的空间构型等方面丰富和发展了现代价键理论。
所谓的轨道杂化,简而言之,就是指在形成分子时,由于原子的相互影响,若干不同类型能量相近的原子轨道混合起来,重新组合成一组新轨道。
这种轨道重新组合的过程叫杂化,所形成的新轨道就称为杂化轨道。
通过杂化轨道理论形成分子时,一般的材料都会存在激发、杂化和轨道重叠等过程。
比如ch4分子的形成过程:碳原子2s轨道中1个电子吸收能量跃迁到2p空轨道上,这个过程称为激发。
但这个时候各个轨道的能量并不完全相同,于是1个2s轨道和3个2p轨道“混合”起来,形成能量相等、成分相同的4个sp3杂化轨道
然后4个sp3杂化轨道上的电子间相互排斥,使四个杂化轨道指向空间距离最远的正四面体的四个顶