听到了那声赞美,薇拉的嘴角翘着一抹开心的弧度。
对于她而言,这无疑是世界上最好听的赞美。
站在陆舟的旁边,她轻声说道。
“您的猜测是正确的,角谷猜想是一个数论问题,同时也是一个复分析问题……”
早在1994年,l.berg和g.meinardus便证明了3n+1猜想等价于函数方程h(z3)=h(z^6)+{h(z2)+λh(λz2)+λ2h(λ2z2)}/3z(其中λ=e^(2πi/3))在单位圆盘{z:|z|<1}中的解析函数解呈h(z)=h0+h1z/(1?z)形式。(h0和h2为复常数)
而在此基础之上,施莱歇(d.schleicher)等人又于1998年证明了任何整函数h(z)均使得g(z)=z/2+(1?cosπz)(z+1/2)/2+1/π(1/2?cosπz)sinπz+h(z)sin2πz满足:n?Φ(g)。
基于这两条结论,薇拉通过构造了一个巧妙的超越整函数,证明了存在整函数h(z),使得对于上述结论中g(z)、Φ(g)的每一个包含某正整数的分支d,均存在z0∈d,使得{g^ok(z0)}∞/k=1收敛到1。
由此不难推出,角谷猜想成立!
“非常出色的证明……”脸上带着欣慰地笑容,陆舟发自内心地说道,“出色的令我惊讶。”
从16年的夏天,到现在已经是17年年末。
他很高兴地看见,自己的学生成长了起来。
也很高兴地看见,自己为加性数论问题构建的“群构法”理论,并没有止步于哥德巴赫猜想,不只是如此,更是在自己的学生身上得到了传承。
他现在倒是有些体会到了,系统描