对称粒子发现,就能为超弦理论提供有力的实验证据(并非证明!)。
但如果找不到,发展了将近30年的超弦理论,将陷入僵局。
不过,德利涅对于物理学界并不是特别关心,虽然他和他已故的老师不少研究成果在物理学界都大放异彩,但他所专注的领域还是在纯粹数学上。
尤其是数论,以及代数几何。
“现在恭喜我还太早了,”威滕笑了笑,用开玩笑的语气说道,“我觉得我的诺贝尔奖,怎么也得排在斯蒂芬·霍金的后面……这辈子大概是没什么机会了。”
想要获得火药奖,必须是被实验证明的理论,而寻找构成宇宙的那根琴弦,可比制造一个黑洞去证明黑洞蒸发理论困难得多了。
后者在理论上是可以做到的,只需要足够大的对撞能量,制造一个微小尺度上的黑洞,以及改进观测设备,将这个以光速蒸发的黑洞观测到。
但前者,可不是强子对撞机上升几个能级就能解决的,而是需要人类文明的最小观察尺度,往下深入两个层级——去观测一维层面的东西。
以现有的技术手段,妄想完全证明超弦理论,就像古人在凳子底下插上爆竹就想登月一样异想天开。
听到老朋友的这声自嘲,德利涅淡淡笑了笑,随口说:“当时他也在听报告会?”
威滕笑了笑说:“不是听报告会,是上台做报告。你敢相信吗,750gev的线索,竟然是一个实习生在报告会上提出的。他运用概率学上的方法,推算出了在750gev能区出现特征峰的概率,然后你猜发生了什么?cern的研究员做了一个月的实验,在强子对撞机这两个探测器上,还真就发现了这个特征峰。”
一直盯着论文看的德利涅微微愣了下,过了好一会儿,才用带着些许意外的语气,说道:“……没想到他在物理上竟然还有这种天赋。”