笔奇阁

繁体版 简体版
笔奇阁 > 大明地师 > 027 线性规划

027 线性规划(2 / 5)

这个问题听起来非常清楚,但所有的人都知道,这样的题,是他们根本解决不了的。

1丈的长竹,可以裁成2根4尺的,余下的部分裁成1根1尺7寸的,这样会余3寸的竹头;换种裁法,可以裁成1根4尺的,1根2尺6寸的,2根1尺7寸的,这样正好不浪费。问题在于,需要的数量是三种尺寸各150根,这就要使各种裁法相互组合。至于如何组合才是最优的,在众人心目中,除了一根一根去试验之外,并无更好的办法。

很显然,苏昊提出这样一个问题,并不是让吴之诚去用试验方法来解的,偏偏吴之诚还不知道如何求解。你要说这个问题属于冷门偏门吧,好像也说不过去,类似于这样的问题,在曰常生活中是完全可能碰上的。

农历四月中旬的天气,别人都热得冒汗,吴之诚却觉得背心上全是冷汗。作为一个心高气傲的大儒,最受不了的事情,就是被别人在学问上问倒了。吴之诚这辈子倒不是没有过被别人问倒的时候,但没有一次是像现在这样,明明觉得这是一个非常简单的问题,但自己连一点门道都摸不着。

“苏昊,这是一个算学的问题,我却记不起哪本书上有口诀可用。你出了这个题,莫非你能够解出来?”方孟缙从身边吴之诚的喘气声中,能够听出他正处于尴尬之中,便打破沉默,向苏昊发问了。方孟缙没有与苏昊赌什么东西,他来发问,是非常合适的。

苏昊在出题的时候,就没指望吴之诚能够做出来,要知道,这可是一个线姓规划的问题,超前于这个时代好几百年了。即便是在西方,线姓规划问题的提出,也是在200年之后,即在19世纪初的时候。最早提出这个问题的,是著名的法国数学家傅利叶,但以傳利叶的水平,竟然也找不出一个好的解决方案,而是要等到又过了100多年,到20世纪50年代的时候,才有了相应的算法。

苏昊拿这样的题来考吴之诚,说穿了

『加入书签,方便阅读』